Listed in: Physics and Astronomy, as PHYS-124
Formerly listed as: PHYS-24
David Hanneke (Section 01)
William A. Loinaz (Section 01)
In the mid-nineteenth century, completing nearly a century of work by others, Maxwell developed an elegant set of equations describing the dynamical behavior of electromagnetic fields. A remarkable consequence of Maxwell’s equations is that the wave theory of light is subsumed under electrodynamics. Moreover, we know from subsequent developments that the electromagnetic interaction largely determines the structure and properties of ordinary matter. This course will begin with Coulomb’s Law but will quickly introduce the concept of the electric field. Students will explore moving charges and their connection with the magnetic field, study currents and electrical circuits, and discuss Faraday’s introduction of the dynamics of the magnetic field and Maxwell’s generalization. Laboratory exercises will concentrate on circuits and electronic measuring instruments. Four hours of lecture and discussion and one three-hour laboratory per week.
Course meetings will be synchronous to the extent possible. Depending on the distribution of student locations, the meetings may be entirely online or a hybrid of online and in-person. The meeting times are subject to change, based on student time zones and availability. Students will receive a kit that allows completion of the labs.
Requisite: MATH 121 and PHYS 116 or 123. Limited to 24 students. Spring semester. The Department.
If Overenrolled: Preference to first year students